Scalable variational inference for Bayesian variable selection in regression, and its accuracy in genetic association studies

نویسندگان

  • Peter Carbonetto
  • Matthew Stephens
چکیده

The Bayesian approach to variable selection in regression is a powerful tool for tackling many scientific problems. Inference for variable selection models is usually implemented using Markov chain Monte Carlo (MCMC). Because MCMC can impose a high computational cost in studies with a large number of variables, we assess an alternative to MCMC based on a simple variational approximation. Our aim is to retain useful features of Bayesian variable selection at a reduced cost. Using simulations designed to mimic genetic association studies, we show that this simple variational approximation yields posterior inferences in some settings that closely match exact values. In less restrictive (and more realistic) conditions, we show that posterior probabilities of inclusion for individual variables are often incorrect, but variational estimates of other useful quantities—including posterior distributions of the hyperparameters—are remarkably accurate. We illustrate how these results guide the use of variational inference for a genome-wide association study with thousands of samples and hundreds of thousands of variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

varbvs: Fast Variable Selection for Large-scale Regression

We introduce varbvs, a suite of functions written in R and MATLAB for regression analysis of large-scale data sets using Bayesian variable selection methods. We have developed numerical optimization algorithms based on variational approximation methods that make it feasible to apply Bayesian variable selection to very large data sets. With a focus on examples from genome-wide association studie...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

Doubly Stochastic Variational Bayes for non-Conjugate Inference

We propose a simple and effective variational inference algorithm based on stochastic optimisation that can be widely applied for Bayesian non-conjugate inference in continuous parameter spaces. This algorithm is based on stochastic approximation and allows for efficient use of gradient information from the model joint density. We demonstrate these properties using illustrative examples as well...

متن کامل

Profile Predictive Inference

Bayesian predictive inference analyzes a dataset to make predictions about new observations. When a model does not match the data, predictive accuracy su ers. We develop population empirical Bayes ( ), a hierarchical framework that explicitly models the empirical population distribution as part of Bayesian analysis. We introduce a new concept, the latent dataset, as a hierarchical variable and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011